
Learn SQL |

1

Learn SQL by Calculating
Customer Lifetime Value
Setup, Counting and Filtering

Learn SQL |

2

CONTENTS

Getting Started
Scenario
Setup
Sorting with ORDER BY
FilteringwithWHERE
FilteringandSorting
GROUPBY:SQL’sPivotTable
JOIN:ConnectingMultipleSources of Information
The Other CLV: Campaign Lifetime Value
Conclusion
Sample Queries
Logical Operators
Comparison Operators
Aggregation Functions

3
4
4
7
9
11
12
14
16
17
18
18
18
19

Learn SQL |

3

SQL (Structured Query Language) is the most widely used query language for
retrieving data from a database. Product managers, marketers, and related
professionals rely on data for their decision making, but often have to turn to IT
staff to perform these data retrievals. However, by adapting their existing Excel
formula skills, such professionals can develop a SQL skillset which empowers
them to perform their own data analysis on large databases.

Getting Started
Many SQL learning guides rely on showing syntax without giving a context.
The approach in this tutorial is different. You will learn SQL through a simple
but typical data analysis scenario. Each step introduces a new SQL concept
that’s tied to a common business question. To further aid explanation, each
query is explained in Excel equivalent terms. By the end of this tutorial, you
should feel comfortable getting read-only access to your company’s databases
and running your own queries from a command prompt.

The Excel concepts that correlate to SQL include the following:

EXCEL SQL

Table Table

Row Record

Column Field

Sort ORDER BY

Filter WHERE

Pivot Table GROUP BY

VLOOKUP JOIN

Array Functions Aggregate Functions

Getting Started

Learn SQL |

4

SQL Description

SELECT Statement

GROUP BY Statement

ORDER BY Keyword

DESC Optional ORDER BY keyword

NOT Keyword

AND, OR, IN, LIKE Operator

WHERE Clause

JOIN Clause

AS Alias

The SQL concepts covered in this tutorial include:

Scenario
Imagine that you are a product manager at an e-commerce or SaaS startup.
For such a business, the critical metric is Customer Lifetime Value (CLV or
CLTV). If you know how much revenue each customer brings to your business
over their lifetime with the product of service, you have a much better idea of
how to meet revenue goals and develop your offering.

Knowing the CLV for each customer leads to more efficient business decisions.
Which customer acquisition channel has high CLVs? Which one is losing
money? Are there regional differences?

This tutorial teaches SQL by walking through the steps of computing the
average Customer Lifetime Value from two database tables: user data (“users”)
and transactional records (“payments”).

Setup
This tutorial uses SQLite3, a free, widely deployed, embedded SQL database
engine that is included with Mac OSX. A free download for Windows is available
at www.sqlite.org.

SQLite requires a command line interface. (I promise that you won’t have to do
much here besides entering SQL commands.) On the Mac, the command line

Scenario | Setup

Learn SQL |

5

Setup

interface is Terminal, which can be found by searching for it in your applications
folder. Windows users will need to open a CMD window, which can be found
through a search for “command prompt”. If you’re brand new to the console,
take a moment to do a web search for “terminal commands _________”, inserting
your operating system (Windows, Mac, Linux, etc.) in the blank, and familiarize
yourself with simple navigational commands like Change Directory (“cd”) to
move around your file system.

To run the SQLite3 interactive shell, download this file as bootstrap.sql. Next,
start Terminal, change to the directory containing the bootstrap.sql file you just
downloaded, and execute the following command:

$sqlite3 -initbootstrap.sql

Note that the dollar sign ($) symbolizes the start of a new command line in your
terminal; you do not need to type it as part of the command. This starts the
SQLite interactive shell and displays the prompt:

sqlite>

The boostrap.sql file creates two pre-populated tables. To display the table
names, enter the command “.tables” at the prompt:

sqlite>.tables payments users

Now that we know the names of the tables (payments, users), we can enter
a command to view the table contents. Note that unlike Excel, you need to
actually query a database to view the data in a table.

The simplest SQL query fetches all the columns and rows in a table. DO NOT
DO THIS for very large tables as it may cause your computer to hang. However,
for this tutorial, the table is small (just 10 rows), so entering the statement
“SELECT * FROM users;” is safe. Note the statement syntax requires a trailing
semicolon.

http://get.treasuredata.com/rs/714-XIJ-402/images/bootstrap.sql

Learn SQL |

6

sqlite> SELECT * FROM users;

id campaign signed_up_on

---------- ---------- ------------

1 facebook 2014-10-01

2 twitter 2014-10-02

3 direct 2014-10-02

4 facebook 2014-10-03

5 organic 2014-10-03

6 organic 2014-10-03

7 organic 2014-10-04

8 direct 2014-10-05

9 twitter 2014-10-05

10 organic 2014-10-05

Note that in SQL, “*” is a wild card meaning “grab everything”. In this case,
SELECT * means “grab every column”. You’ll see later on that in real world
queries, we usually only SELECT the columns we need to create a report or
perform a computation.

As you can see, the users table has three columns, or fields:

• “id” is the user’s ID. This is a unique identifier that is also referenced in the
payments table
• “campaign” is the campaign used to acquire that user.
• “signed_up_on” is the date when the user signed up for the campaign.

Below is an Excel equivalent table. By comparison, each field is represented
with a column:

Setup

Learn SQL |

7

Sorting with ORDER BY
Just like Excel, SQL lets you sort data by one or more fields (columns).
To do so, we add the ORDER BY keyword to the SELECT statement:

sqlite> SELECT * FROM users ORDER BY

campaign;

id campaign signed_up_on

---------- ---------- ------------

3 direct 2014-10-02

8 direct 2014-10-05

1 facebook 2014-10-01

4 facebook 2014-10-03

5 organic 2014-10-03

6 organic 2014-10-03

7 organic 2014-10-04

10 organic 2014-10-05

2 twitter 2014-10-02

9 twitter 2014-10-05

The ORDER BY keyword correlates to the Excel Sort command:

Sorting with ORDER BY

Learn SQL |

8

Just like Excel, SQL can sort by more than one field:

sqlite> SELECT * FROM users ORDER BY campaign;

id campaign signed_up_on
---------- ---------- ------------
1 facebook 10/1/2014
3 direct 10/2/2014
2 twitter 10/2/2014
4 facebook 10/3/2014
5 organic 10/3/2014
6 organic 10/3/2014
8 direct 10/5/2014
7 organic 10/5/2014
10 organic 10/5/2014
9 twitter 10/5/2014

In the above query, the users table was sorted by the signed_up_on date and
then at a second level by campaign.
To sort in reverse order, add DESC to ORDER BY:

sqlite> SELECT * FROM users ORDER BY campaign;

id campaign signed_up_on
---------- ---------- ------------
2 twitter 2014-10-02
9 twitter 2014-10-05
5 organic 2014-10-03
6 organic 2014-10-03
7 organic 2014-10-04
10 organic 2014-10-05
1 facebook 2014-10-01
4 facebook 2014-10-03
3 direct 2014-10-02
8 direct 2014-10-05

To sort records in descending order by multiple fields, use DESC with each field:

sqlite> SELECT * FROM users ORDER BY

campaign DESC, signed_up_onDESC;

id campaign signed_up_on
---------- ---------- ------------
9 twitter 10/5/2014
7 organic 10/5/2014
10 organic 10/5/2014
8 direct 10/5/2014
5 organic 10/3/2014
6 organic 10/3/2014
4 facebook 10/3/2014
2 twitter 10/2/2014
3 direct 10/2/2014
1 facebook 10/1/2014

Sorting with ORDER BY

Learn SQL |

9

Filtering with WHERE
In Excel, we display rows that meet certain criteria by using a filter. In SQL, we
achieve this with a WHERE clause, which can include an even broader range of
conditions than an Excel filter.

For example, below is a query that fetches all the users who signed up
organically. Note that the syntax for a WHERE clause requires criteria in single
quotation marks:

sqlite> SELECT * FROM users WHERE campaign = ‘organic’;

id campaign signed_up_on
---------- ---------- ------------
5 organic 2014-10-03
6 organic 2014-10-03
7 organic 2014-10-04
10 organic 2014-10-05

As you can see, we have WHERE campaign = ‘organic’ in the above query. An
analog in Excel is going to the “campaign” column and selecting just ‘organic’.

What if you want to fetch multiple values? No problem, use the SQL IN
operator:

sqlite> SELECT * FROM users WHERE campaign IN
(‘facebook’, ‘twitter’);

id campaign signed_up_on
---------- ---------- ------------
1 facebook 2014-10-01
2 twitter 2014-10-02
4 facebook 2014-10-03
9 twitter 2014-10-05

The above query fetches all the users that signed up through Facebook or
Twitter. As you can see, multiple criteria are separated by commas inside the
parentheses.

Filtering with WHERE

Learn SQL |

10

What if you wanted to fetch all the users EXCEPT those that came from
Facebook or Twitter? This requires the NOT keyword:

sqlite> SELECT * FROM users WHERE campaign NOT IN
(‘facebook’, ‘twitter’);

id campaign signed_up_on
---------- ---------- ------------
3 direct 2014-10-02
5 organic 2014-10-03
6 organic 2014-10-03
7 organic 2014-10-04
8 direct 2014-10-05

10 organic 2014-10-05

It’s significant to note that it’s not easy to “exclude” particular values for a given
column in Excel.

Okay, but all the filtering thus far involved a single field. Can SQL filter by
multiple fields? The answer is yes, by using the AND operator to query for more
than one condition. The following query fetches all the users that signed up for
Facebook or Twitter campaigns on Oct. 1, 2014.

sqlite> SELECT * FROM users WHERE campaign IN
(‘facebook’, ‘twitter’) AND signed_up_on = ‘2014-10-01’;

id campaign signed_up_on
---------- ---------- ------------
1 facebook 2014-10-01

Filtering with WHERE

Learn SQL |

11

Now it’s time to show that the SQL WHERE clause is more powerful than Excel
filters. In addition to AND for more than one condition, SQL includes the OR
operator, which queries for one condition OR another. So, the query “Get me all
the users who signed up before 2014- 10-04 OR who came in organically” looks
like:

sqlite> SELECT * FROM users WHERE campaign = ‘organic’
OR signed_up_on < ‘2014-10-04’;

id campaign signed_up_on
---------- ---------- ------------
1 facebook 2014-10-01
2 twitter 2014-10-02
3 direct 2014-10-02
4 facebook 2014-10-03
5 organic 2014-10-03
6 organic 2014-10-03
7 organic 2014-10-04
10 organic 2014-10-05

This is not easy to do in Excel. Most likely you would need to create an
additional column.

Filtering with WHERE | Filtering and Sorting

Filtering and Sorting
As you might have guessed by now, SQL allows you to filter and sort in one
pass. The syntax is simple: Have both WHERE and ORDER BY in the SELECT
statement, but make sure WHERE comes before ORDER BY. Here is a query
that fetches all the Facebook and Twitter sourced users, sorted by campaign.

sqlite> SELECT * FROM users WHERE campaign IN
(‘facebook’, ‘twitter’) ORDER BY campaign;

id campaign signed_up_on
--- --------- ------------
1 facebook 2014-10-01
4 facebook 2014-10-03
2 twitter 2014-10-02
9 twitter 2014-10-05

Learn SQL |

12

GROUP BY: SQL’s PivotTable

GROUP BY: SQL’s PivotTable
Now that we understand how to do basic sorting and filtering with SQL, we are
ready to learn how to calculate CLV. For our simple model of an e-commerce
website, we’ll consider CLV to be the sum of all the purchases a customer has
made to date. For this we’ll need the GROUP BY statement.

The simplest way to describe the GROUP BY statement is: SQL’s version of a
PivotTable. To explain what this means, let’s query the payments table, which
stores transaction data (e.g. for an ecommerce site):

sqlite> SELECT * FROM payments;

id amount paid_on user_id
---- ------- ---------- -------
1 40 2014-10-02 1
2 30 2014-10-03 1
3 30 2014-10-03 2
4 50 2014-10-03 4
5 100 2014-10-04 4
6 30 2014-10-05 5
7 30 2014-10-06 6
8 50 2014-10-07 8
9 50 2014-10-08 2
10 50 2014-10-09 9
11 40 2014-10-10 10
12 100 2014-10-11 7
13 40 2014-10-12 3

A typical question to ask here is how much money did each of the 10 users
spend on our site?

In Excel, this is as simple as creating a PivotTable:

Learn SQL |

13

GROUP BY: SQL’s PivotTable

The equivalent operation in SQL uses the GROUP BY statement:

sqlite> SELECT user_id, SUM(amount) FROM payments GROUP

BY user_id;

user id SUM (amount)
------- ------------
1 70
2 80
3 40
4 150
5 30
6 30
7 100
8 50
9 50
10 40

As the name suggests, the GROUP BY statement groups the table’s rows based
on a column name. In the payments query, GROUP BY user_id groups the
payments table based on its user_id column.

In the query above, we’re also using an aggregation function SUM() to tell our
query how it should combine the values from multiple rows with the same
user_id. Without this aggregation, the query would just return the value of the
last row for each user_id (not useful).

Correlating the query to Excel looks like:

SELECT user_id, SUM(amount) FROM payments GROUP BY user_id;

Needless to say, GROUP BY can be combined with WHERE (filtering) and ORDER
BY (sorting). Syntactically, WHERE comes before GROUP BY, which in turn
comes before ORDER BY.

For example, the query below calculates CLV for users with user_id > 5, sorted
by CLV amount. Note the use of the SQL AS for giving the SUM(amount) field an
alias (new name) in the output

Row labels For each user_id

Like setting Excel’s Pivot Table’s
value field to be SUM(amount)

Learn SQL |

14

JOIN:ConnectiongMultipleSources of Information

sqlite> SELECT user_id, SUM(amount) AS clv FROM
payments WHERE user_id > 5 GROUP BY user_id ORDER BY
clv;

user id clv
------- ------------
6 30
10 40
8 50
9 50
7 100

JOIN:ConnectingMultipleSources of
Information
We have learned several SQL concepts by first querying the users table
and then by querying the payments table. But what if we want our query
to consider fields from both tables? Let’s say you wish to determine which
campaign (organic/Facebook/Twitter/direct) yields the highest CLV? In this case,
we need to cross reference data from the payments table with the campaign
field from the users table.

In Excel, this is where VLOOKUP comes in. Namely, you VLOOKUP the campaign
column in the users table for the CLV PivotTable:

This is all well and good, but what if you have more than 10 users? What if,
say, you have 100,000 users? Excel won’t be able to handle the data, or even
if it can, the UI begins to lag. And if you have 10 million users (which happens
with decently sized e-commerce websites), Excel is definitely not going to be
sufficient.

Learn SQL |

15

SQL databases (e.g., MySQL, PostgreSQL, etc.) are far more scalable than
Excel—even more so with proper indices—and can perform more complex
computations in a more automated manner. (Indexing is a fascinating and
deep topic in databases, but it’s beyond the scope of this tutorial. Just know
that grouping by indexed columns is much faster than grouping by unindexed
columns.)

To perform the same operation in SQL, a JOIN clause must first combine tables
based on the common field between them and then use the combined rows of
data to select the output:

sqlite> SELECT joined.user_id, joined.clv,
users.campaign FROM (SELECT user_id, SUM(amount) AS clv
FROM payments GROUP BY user_id) AS
clv_table
JOIN users
ON clv_table.user_id = users.id;

user_id clv campaign
-------- ----- ----------
1 70 facebook
2 80 twitter
3 40 direct
4 150 facebook
5 30 organic
6 30 organic
7 100 organic
8 50 direct
9 50 twitter
10 40 organic

In the query above, the first line chooses columns from the joined table. Note
the field names begin with their table name followed by a period. For example,
users.campaign.

In the FROM line, we use the original CLV query in parentheses to create a new
table we aliased as ‘clv_table’. This aggregate table is created at the time of the
query, stored in memory, and then destroyed after the result is output to our
terminal. We can use as many nested SELECT statements as we want to create
temporary aggregate tables to answer more complex questions.

The JOIN and ON lines show that we are joining the users table onto the joined
table that we just aliased. But how do you join two tables?

This is answered on the last line: it matches the rows of the joined table with
the rows of the users table so that the clv_table’s user_id field equals the users
table’s id field. There is no strictly equivalent process for this in VLOOKUP
because VLOOKUP forces you to JOIN by the leftmost columns. In SQL, you can
JOIN by any desired columns!

JOIN:ConnectiongMultipleSources of Information

Learn SQL |

16

The Other CLV: Campaign Lifetime Value
Now that we have a single view of the user IDs, campaign sources, and CLVs,
we can calculate which campaign has the highest return thus far. To do so, we
simply run one more GROUP BY, grouping per-user CLV by campaign:

sqlite> SELECT campaign, SUM(clv) AS campaign_value
FROM (SELECT clv_table.user_id,
clv_table.clv, users.campaign FROM (SELECT user_id,
SUM(amount) AS clv FROM payments GROUP
BY user_id) AS clv_table
JOIN users
ON clv_table.user_id = users.id) GROUP
BY campaign ORDER BY campaign_value DESC;

campaign campaign_value
--------- --------------
facebook 220
organic 200
twitter 130
direct 90

From this we discover that Facebook is the winner! It looks like there is a
healthy amount of organic traffic, comparable to Twitter. Note that this data
only accounts for how much revenue is generated for each campaign. Different
campaigns have different costs, so if you wish to calculate the ROI of different
campaigns (and I hope you do!), you need the data for how much money is
spent on each campaign.

The Other CLV: Campaign Lifetime Value

Learn SQL |

17

Conclusion
• GROUP BY in SQL is like PivotTable in Excel, except it scales better with larger
datasets (especially with proper indices).

• JOIN in SQL is like VLOOKUP in Excel, except JOIN is more flexible.

• You can query against an output of another query to ask more complex
questions against your data.

If you want to process massive datasets using SQL, check out Treasure Data’s
cloud analytics platform. For more use-case specific SQL query templates,
check out our library!

Feel free to contact me on Twitter @kiyototamura if you have any questions.

Kiyoto Tamura
Kiyoto began his career in quantitative finance
before making a transition into the startup
world. A math nerd turned software engineer
turned developer marketer, he enjoys
postmodern literature, statistics, and a good
cup of coffee.

Conclusion

Learn SQL |

18

Sample Queries

1.

SELECT_____FROM_____WHERE____ORDER BY____;

2. When using an aggregation function:

SELECT Agg.Func.(______) FROM_____GROUP BY ______;

3. When using JOINs:

SELECT table1.column2, table2.column3 FROM table1
JOIN table2
ON table1.column1=table2.column1;

Logical Operators
1. AND is used to select rows from a column that satisfy both the conditions in
a conditional statement

2. OR is used to select rows from a column that satisfy one of the conditions in
a conditional statement

3. NOT is used before any conditional statement to select the rows that do not
satisfy the condition

Comparison Operators:
1. =

2. <

3. >

4. <=

5. >=

6. != means NOT EQUAL

7. IN is used to specify the values we need in a column

8. BETWEEN is used to specify the range and select only the rows in that range

9. IS NULL is used to select the rows with no values in a column

Sample Queries

Learn SQL |

19

Aggregation Functions:
1. SUM is used to add all the rows in a column

2. AVG is used to average all the rows in a column

3. MIN is used to find the minimum value in all the rows in a column

4. MAX is used to find the maximum value in all the rows in a column

5. COUNT is used to count all the rows in a column

6. DISTINCT is used to count all unique the values in a column

Sample Queries

